Lesson 2-6

Prove: If $\angle ABD$ and $\angle DBC$ form a linear D , pair, then they are supplementary.		
Statement	Reasons B	
1) ∠ABD & ∠DBC form a linear pair.	Given	
2) $\overrightarrow{BA} & \overrightarrow{BC}$ form a straight line	Def. of linear pair	
3) m∠ABC =180°	Def. of straight angle	
4) $m \angle ABD + m \angle DBC = m \angle ABC$	Angle Addition Post.	
5) m $\angle ABD + m \angle DBC = 180^{\circ}$	Substitution (3 into 4)	
6) $\angle ABD \& \angle DBC$ are suppl.	Def. of Suppl. Angles	

Congruent	If two angles are supplementary
Supplements -	to the same angle, then they
Theorem	are congruent.
Right Angle Congruence - Theorem	All right angles are congruent.
Congruent	If two angles are complementary
Complements -	to the same angle, then they
Theorem	are congruent.

Congruent Supplements Theorem		
Prove: If $\angle ABE \& \angle EBC$ are suppl. & $\angle EBC \& \angle DBC$ are suppl., then $\angle ABE \cong \angle DBC$.		
Statement	Reasons	
 ∠ABE & ∠EBC are suppl. ∠EBC & ∠DBC are suppl. 	Given	
2) $\underline{m} \angle ABE + \underline{m} \angle EBC = 180^{\circ}$ $\underline{m} \angle EBC + \underline{m} \angle DBC = 180^{\circ}$	Def. of suppl. angles	
3) $m\angle ABE + m\angle EBC = m\angle EBC + m\angle DBC$	Substitution (2 into 2)	
4) m∠EBC = m∠EBC	Reflexive Property	
5) m∠ABE = m∠DBC	Subtract Prop of Equal.	
6) $\angle ABE \cong \angle DBC$	Def. of $\cong \angle s$	

Geometry Slide Show: Teaching Made Easy As Pi, by James Wenk © 2014

Lesson 2-6

Prove: If $\angle 2 \cong \angle 3$, then $\angle 1 \cong \angle 4$.		
Statement	Reasons	
1) $\angle 2 \cong \angle 3$	Given	
2) $\angle 1 \& \angle 2$ are linear pair. $\angle 3 \& \angle 4$ are linear pair.	Def. of linear pair	
3) $\angle 1 \& \angle 2$ are suppl. $\angle 3 \& \angle 4$ are suppl.	Linear Pair Theorem	
4) $m \angle 1 + m \angle 2 = 180^{\circ}$ $m \angle 3 + m \angle 4 = 180^{\circ}$	Def of Suppl. Angles	
5) m $\angle 1 + m \angle 2 = m \angle 3 + m \angle 4$	Substitution (4 into 4)	
6) m∠2 = m∠3	Def. of $\cong \angle s$	
7) m∠1 = m∠4	Subtract Prop of Equal.	
8) ∠1 ≅ ∠4	Def. of $\cong \angle s$	